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Abstract

We introduce a meshfree discretization for a nonlocal diffusion problem using a
localized basis of radial basis functions. Our method consists of a conforming
radial basis of local Lagrange functions for a variational formulation of a volume
constrained nonlocal diffusion equation. We also establish an L2 error estimate
on the local Lagrange interpolant. The stiffness matrix is assembled by a spe-
cial quadrature routine unique to the localized basis. Combining the quadrature
method with the localized basis produces a well-conditioned, sparse, symmetric
positive definite stiffness matrix. We demonstrate that both the continuum and
discrete problems are well-posed and present numerical results for the conver-
gence behavior of the radial basis function method. We explore approximating
the solution to inhomogeneous differential equations by solving inhomogeneous
nonlocal integral equations using the proposed radial basis function method.

Keywords: Radial basis functions, nonlocal diffusion, Lagrange functions,
volume constraint

1. Introduction

We introduce a meshfree discretization for a nonlocal diffusion problem using
a localized basis of radial basis functions. Our approach builds upon and signif-
icantly extends the application of radial basis function methods for the nonlocal
diffusion equation introduced in the proceedings paper [1]. We accomplish this
by
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• introducing a conforming radial basis function method of N local Lagrange
functions in contrast to the nonconforming basis of Lagrange functions
used [1];

• demonstrating that the ensuing discrete volume-constrained nonlocal dif-
fusion problem in Rn is well-posed by exploiting the results in the paper
[2] established for the infinite dimensional problem;

• establishing an L2 error estimate for the local Lagrange function inter-
polant;

• reducing the cost of computing the quadrature weights to the solution of
N linear systems of order O(logN)n from that of the 2N linear systems;

• demonstrating that the discretized inhomogeneous nonlocal diffusion is
a good approximation of the classical diffusion problem as the region of
nonlocality ε vanishes;

In particular, our approach maintains the same benefits of the radial basis
function method proposed in [1] while avoiding the solution of the dense linear
systems needed for the quadrature weights and determination of the thin plate
spline coefficients in terms of the Lagrange functions—the solution of two lin-
ear systems of order N . Moreover, we extend the results of [1] by considering
inhomogeneous nonlocal diffusion equations and demonstrating that both the
continuum and discrete problems are well-posed by appealing to theory devel-
oped in [2].

Nonlocal diffusion generalizes classical diffusion by replacing the partial dif-
ferential equations with integral equations. Various models have been proposed
for these cases of so-called anomalous diffusion, which include models based on
integral equations and fractional derivatives. The nonlocal equation we consider
has applications in a variety of fields besides anomalous diffusion such as image
analyses, nonlocal heat conduction, machine learning, and peridynamic me-
chanics. We apply our conforming radial basis method to a volume constrained
diffusion equation. Volume constraints replace the boundary conditions associ-
ated with classical diffusion and are needed to demonstrate that the problem is
well-posed and then allow a link with a Markov jump process; see [2, 3] for ad-
ditional information and citations to the literature. Section 2 reviews nonlocal
diffusion, its relationship with classical diffusion and its variational formulation.

Radial basis functions have been extensively studied for meshfree interpo-
lation and approximation. Radial basis functions have also been applied in a
variety of areas besides interpolation of scattered data on subsets Rn. They have
seen notable success in collocation methods for elliptic, parabolic, and hyper-
bolic partial differential equations. Section 3 briefly reviews the aspects of radial
basis functions needed, including citations to the literature, and introduces the
application of local Lagrange functions and a quadrature rule necessary for a
practical numerical method. To the best of our knowledge, the application of
these two techniques to finite domains in Rn is a novel contribution of our paper.
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Section 4 introduces the simple modification of the local Lagrange functions
rendering the novel conforming radial basis function method for nonlocal diffu-
sion that is the primary contribution of our paper. Proposition 1 establishes an
L2 error estimate on the local Lagrange interpolant; the numerical experiments
demonstrate that second order convergence is observed, in concordance with the
error estimate. We also propose an approximation of the stiffness matrix via
the quadrature rule introduced in Section 3.2 that results in a matrix contain-
ing the sparsity inherent in the integral operator. We also demonstrate that the
resulting approximate stiffness matrix is symmetric positive definite given some
mild conditions.

Numerical experiments for the discretization of the nonlocal diffusion prob-
lem are discussed in Section 5. In addition to studying the discretization of
nonlocal diffusion problems, Section 5.3 presents experiments that consider ap-
proximating the solution to an inhomogeneous differential equation by discretiz-
ing and solving an inhomogeneous nonlocal diffusion problem.

1.1. Nonlocal vector calculus

The nonlocal vector calculus developed in [4] provides nonlocal analogues of
the gradient, divergence, and curl operators. We quickly summarize the aspects
of the nonlocal vector calculus required for the nonlocal diffusion equation; the
calculus enables a concise formulation synergistic with conventional variational
formulation of classical diffusion.

Let ν(x, y), α(x, y) : Rn × Rn → Rk where α is an anti-symmetric mapping,
i.e., α(x, y) = −α(y, x). The nonlocal divergence operator D acts on ν by(

Dν
)
(x) :=

∫
Rn

(
ν(x, y) + ν(y, x)

)
· α(x, y) dy.

The adjoint operator D∗u(
D∗u

)
(x, y) = −

(
u(y)− u(x)

)
α(x, y) for x, y ∈ Rn ,

and is derived from the inner product∫
Rn

(
Dν
)
(x)u(x) dx =

∫
Rn

∫
Rn

ν(x, y)
(
D∗u

)
(x, y) dy dx .

For an open subset Ω ⊂ Rn, we define the interaction domain

ΩI := {y ∈ Rn \ Ω : α(x, y) 6= 0 for some x ∈ Ω} (1)

representing the set of points that interact with points in Ω.

2. Variational formulation of nonlocal diffusion

We define the energy functional

E(u; f) :=
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗u ·
(
Θ · D∗u

)
dx dy −

∫
Ω

fu dx
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where f is a given function defined over Ω and Θ is a second-order tensor
satisfying Θ(x, y) = ΘT (x, y) = Θ(y, x). Let Ec(u) :=

∫
ΩI
u(x)2 dx denote the

constraint functional. We consider the minimization problem

minE(u; f) subject to Ec(u) = 0.

The constraint functional may be interpreted as a nonlocal Dirichlet volume
constraint analogous to a Dirichlet boundary condition. By considering test
functions v that satisfy Ec(v) = 0, we arrive at the necessary conditions for the
minimization problem: Find u such∫

Ω∪ΩI

∫
Ω∪ΩI

D∗u ·
(
Θ · D∗v) dy dx =

∫
Ω

f v dx (2)

holds for all v. To derive the strong form of the above variational problem, we
use the nonlocal Green’s first identity∫

Ω

vD
(
Θ · D∗u

)
d x−

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗u ·
(
Θ · D∗v) dy dx =

∫
ΩI

vN
(
Θ ·D∗u

)
dx ,

where the interaction operator N (ν) : Rn → R is defined by

N (ν)(x) := −
∫

Ω∪ΩI

(
ν(x, y) + ν(y, x)

)
· α(x, y) dy for x ∈ ΩI ,

to rewrite (2). Since v satisfying the constraint Ec(v) = 0 is arbitrary, we have
formally established that {

Lu = f on Ω,

u = 0 on ΩI ,
(3a)

is the classical formulation of the variational problem (2) where

Lu =

∫
Ω∪ΩI

D∗u ·
(
Θ · D∗u

)
dy , (3b)

or as an integral operator

Lu(x) =

∫
Ω∪ΩI

(
u(y)− u(x)

)
α(x, y) ·

(
Θ(x, y)α(x, y)

)
dy , x ∈ Ω . (3c)

2.1. Abstract Variational Problem

In contrast to the classical diffusion model that imposes boundary conditions,
the nonlocal model enforces conditions over a positive measure volume, or a
volume constraint. This constraint is the key to demonstrating that the weak
formulation of (3) is well-posed. We briefly review the results in [2] providing
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conditions on the kernel γ = α ·Θ · α so that the nonlocal diffusion equation is
well-posed. Suppose that the kernel satisfies the following conditions:

γ(x, y) ≥ 0 ∀y ∈ Bε(x) and γ(x, y) ≥ γ0 > 0 ∀y ∈ Bε/2(x) , (4a)

γ(x, y) = 0 ∀y ∈ (Ω ∪ ΩI)\Bε(x) , (4b)

for a sphere Bε(x) of finite radius ε centered at x, and assume there exist positive
constants γ1 and γ2 so that

γ1 ≤
∫

(Ω∪ΩI)∩Bε(x)

γ(x, y) dy ,

∫
Ω∪ΩI

γ2(x, y) dy ≤ γ2
2 ∀x ∈ Ω . (4c)

Let Ω ⊂ Rn be an open region and let ΩI be the interaction domain corre-
sponding to Ω, as defined in (1). Let u, v ∈ L2(Ω ∪ ΩI), f ∈ L2(Ω). We define
the bilinear form a(·, ·)

a(u, v) :=
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗u ·
(
Θ · D∗u

)
dy dx. (5)

The nonlocal bilinear form induces a semi-norm |||u||| =
√
a(u, u) on L2(Ω ∪

ΩI), which is equivalent to the L2(Ω∪ΩI) norm for functions restricted to the
constrained energy space

L2
c(Ω ∪ ΩI) := {u ∈ L2(Ω ∪ ΩI) : |||u||| <∞ and u|ΩI = 0 a.e.}.

Our abstract variational problem is: Find u ∈ L2
c(Ω ∪ ΩI) such that

a(u, v) =

∫
Ω

f v dx ∀ v ∈ L2
c(Ω ∪ ΩI) . (6)

The authors of the paper [2] demonstrate the coercivity and continuity of the
bilinear form on L2

c(Ω ∪ ΩI) and the continuity of the linear form on the right
hand-side of (6) imply that the variational problem is well-posed by the Lax-
Milgram theorem.

Since our interest is in the inhomogeneous nonlocal diffusion equation, we
consider symmetric kernels

γ(x, y) :=
(
κ(x) + κ(y)

)
Φε(‖x− y‖), (7)

where κ and Φε are such that the conditions (4) are satisfied, where the radial
function Φε is compactly supported on a ball of radius ε. The results of [2] then
imply that as ε→ 0, the solution uε of (3) converges to the solution of{

∇ · κ∇u = f on Ω

u = 0 on ∂Ω .
(8)

The interested reader should also consult [2] for further details on nonlocal oper-
ators, comparisons between nonlocal diffusion and classical diffusion equations,
and comparisons with the classical vector calculus and the nonlocal calculus.
The recent paper [5] discusses the nonlocal analogue of (8) with a Neumann
boundary condition and relationship with a smoothed particle hydrodynamic
approximation.
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2.2. Discrete Variational Problem

Let Vh = span{φi}Ni=1 ⊂ L2
c(Ω ∪ ΩI) be a finite-dimensional subspace. The

resulting discrete problem for (6) is: Find uh =
∑N
i=1 ciφi ∈ Vh such that

a(uh, φi) =

∫
Ω

f φi dx ∀φi ∈ Vh . (9)

The resulting linear system of order N

Ac = f

has matrix and vector entries given by Ai,j = a(φi, φj), ci = ci, and fi =∫
Ω
f φi dx. In Section 4, we present a conforming discretization using a localized

basis of radial basis functions that generates a well-conditioned, sparse stiffness
matrix. Because the bilinear form a(·, ·) is coercive and symmetric, A is a
symmetric positive definite matrix.

3. Radial Basis Functions

Radial basis functions (RBFs) are used to construct the approximation space
for the Galerkin method we propose in Section 4. Let Ω ⊂ Rn and Φ : Ω → R
be a continuous function. We say that Φ is radial if there exists ϕ : R+ → R
such that Φ(x) = ϕ(‖x‖) for all x ∈ Rn. Let {xi}Ni=1 = X ⊂ Ω be a collection of
scattered points, referred to as centers. A set of radial basis functions {Φi}Ni=1

is constructed by setting Φi(x) = Φ(x− xi) = ϕ(‖x− xi‖).
The geometry of the centers is important for estimating the approximation

quality of the RBF interpolant and for estimating the condition number of the
interpolation matrix. RBF interpolation offers the advantage of not requiring
regular distributions of points; arbitrarily scattered centers produce invertible
interpolation matrices for positive definite functions. Let X ⊂ Ω ⊂ Rn be a
set of scattered centers. We define the mesh norm (or fill distance) h to be the
radius of the largest ball in Ω that does not contain any centers and we define
the separation radius q to be the minimal pairwise distance between the centers.
See Figure 1 for a depiction of the mesh norm. These quantities are defined by

h = sup
x∈Ω

min
xj∈X

‖x− xj‖, q = min
xi,xj∈X

‖xi − xj‖, ρ =
h

q
, (10a)

where the mesh ratio ρ provides a means of judging how well distributed the
points are. Informally, for ρ near one, the centers are almost uniformly dis-
tributed and large ρ indicates clustering of centers. We say that collections of
centers {Xh,q} are quasi-uniformly distributed if there exists positive constants
C1, C2 such that

C1q ≤ h ≤ C2q. (10b)

Geometrically, this condition controls how the centers cluster as the density of
points increases. We note that for the quasi-uniformly distributed collections
of centers {Xh,q}, we do not require that any of the point sets are nested in
another. The interested reader should consult [6] or [7] for further details on
radial basis functions and interpolation.
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Figure 1: The mesh norm is the radius of the largest ball that does not contain any centers.

3.1. Local Lagrange Functions

We now discuss the construction of local Lagrange functions that are con-
structed more efficiently than the full Lagrange basis we used previously in [1].
This leads to a significant reduction in computational cost as explained in Sec-
tion 1. Local Lagrange functions were first introduced for use on the sphere [8]
where decay properties and quasi-interpolation convergence rates were studied.
The local Lagrange basis can be constructed in parallel by solving small (rel-
ative to the number of centers) linear systems. Recent work [9] has extended
theoretical properties of the local Lagrange basis to compact domains in Rn.

The construction of local Lagrange functions involves the addition of centers
outside of the domain Ω that are included in a larger set of points Ξ ⊃ X. Let

Ω̃ = {x ∈ Rn : d(x,Ω) ≤Mh| log h|} ,

for a positive constant M . A set of centers Ξ can be constructed such that
Ξ ∩ Ω = X and Ξ has mesh norm h in Ω̃. For each xi ∈ X, let

Υi = {y ∈ Ξ : d(xi, y) ≤Mh| log h|} . (11a)

The constant M is independent of h and can always be chosen, see [9, 8]. The
size of |Υi|, the number of points in Υi, can be estimated by using (10a), the
separation radius q, and a volume estimate. If we apply quasi-uniformity (10b)
and since every center is separated by at least q, we estimate

|Υi| ≤
µ
(
BMh| log h|(xi)

)
µ
(
Bq(xi)

) ∼ Mnhn

Cqn
| log h|n ≤ C̃ρn| log n|n , (11b)

where µ denotes the volume of a set in Rn. For a quasi-uniformly distributed sets
of centers, the mesh ratio ρ (10a) is bounded above and below by constants. This
key estimate (11b) demonstrates that constructing a local Lagrange function
requires solving a linear system of order O

(
logNn

)
as opposed to O(N) for the

full Lagrange functions.
The local Lagrange function centered at xi is defined to be

bi(x) :=

|Υi|∑
j=1

αjϕ(‖x− xj‖) +
L∑
l=1

βlpl(x) (12a)
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where span{pl}Ll=1 denotes the space of polynomials of degree less than or equal
to L on Rn, and for 2m > n the function

ϕ(r) :=

{
r2m−n n is odd

r2m−n log r n is even
(12b)

is a thin plate spline. The coefficients αj and βl are determined by the solution
of the saddle point linear system

δi,j =

|Υi|∑
j=1

αjϕ(‖xi − xj‖) +
L∑
l=1

βlpl(xi) for i = 1, . . . , |Υi| ,

0 =

|Υi|∑
j=1

αjpl(xj) for l = 1, . . . , L .

(12c)

Given the N centers in X, the ensuing N local Lagrange functions can be shown
to satisfy the Kronecker delta property bi(xj) = δi,j . Augmenting the thin plate
splines with polynomial functions ensures that the saddle point system (12c) is
invertible, or equivalently, the interpolation system is well-defined. The thin
plate splines so represent a conditionally positive definite set of functions of
order L, i.e., for any set of centers {xi}Ni=1 satisfying

∑N
i=1 αip(xi) = 0 for any

polynomial p in the span of {pl}Ll=1, the quadratic form
∑N
i=1

∑N
j=1 αiαjϕ(‖xi−

xj‖) is positive.
The local Lagrange functions provide approximation rates analogous to well-

known approximation rates for Lagrange functions, which are globally sup-
ported. We will exploit this result to establish an L2 error estimate for the
interpolant determined via a conforming basis of local Lagrange functions, see
Proposition 1.

Lemma 1. Let n and m denote the space dimension and thin plate spline pa-
rameter (12b), respectively. Suppose that n < 2k ≤ 2m and f ∈ W k

2 (Ω ∪ ΩI)
satisfies f |ΩI

= 0. Then, for sufficiently large M associated with Υi given by
(11b), the quasi-interpolant

ĨX(f) =

N∑
i=1

f(xi)bi ,

satisfies

‖f − ĨXf‖L2(Ω) ≤ Chk‖f‖Wk
2 (Ω).

Proof. We assume the set of centers Ξ ⊂ Ω ∪ ΩI with X := Ξ ∩ Ω. Let χi be
the Lagrange functions centered at xi and bi denote the local Lagrange function

8
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centered at xi. Then,

‖u−
N∑
i=1

u(xi)bi‖L2(Ω∪ΩI) ≤‖u−
N∑
i=1

u(xi)χi‖L2(Ω∪ΩI )

+ ‖
N∑
i=1

u(xi)(χi − bi)‖L2(Ω∪ΩI).

Since
∑N
i=1 u(xi)χi is the Lagrange function interpolant to u using the set of

centers in xi ⊂ Ω∪ΩI , we apply [10, Thm 4.2] to Ω∪ΩI to obtain the estimate

‖u−
N∑
i=1

u(xi)χi‖L2(Ω∪ΩI) ≤ Chk‖u‖Wk
2 (Ω∪ΩI) .

Next, we apply [9, Theorem 4.10] to bound ‖bxi − χxi‖L2(Ω∪ΩI). Because

N ≤ Cq−d holds for quasi-uniformly distributed sets and applying the Sobolev
embedding theorem to bound ‖u‖L∞(Ω∪ΩI) ≤ C‖u‖Wk

2 (Ω∪ΩI), grants the esti-
mate

‖
N∑
i=1

u(xi)(bi − χi)‖L2(Ω∪ΩI) ≤ Cq−n‖ui‖`2(N) sup
i
‖bi − χi‖L2(Ω∪ΩI)

≤ q−2n‖u‖L∞(Ω∪ΩI)h
Mν\2−4m+2n−2τ−1

≤ ChMν\2−4m−2τ−1‖u‖Wk
2 (Ω∪ΩI).

Therefore, for sufficiently large M , the exponent on h is at least as large as k.
Combining the two inequalities yields the desired result.

3.2. Local Lagrange Quadrature
We introduce a quadrature method that is essential for the implementation of

the Galerkin method we introduce in Section 4. Let f ∈W β
2 (Ω) satisfy f |ΩI = 0

and let X ⊂ Ω be a collection of N centers. Let χi be a globally supported
Lagrange function centered at xi ∈ X and let bi be a local Lagrange function
centered at xi. We define the quadrature weight at xi to be wi =

∫
Ω
χi(x) dx and

the Lagrange function quadrature rule to be QX(f) =
∑N
i=1 f(xi)wi. Similarly,

we define the local quadrature weight at xi and local quadrature method to be

ŵi =

∫
Ω

bi(x) dx and Q̂X(f) =
N∑
i=1

f(xi)ŵi , (13)

respectively. We demonstrate that the quadrature error decreases as the mesh
norm decreases.

Lemma 2. Let n and m denote the space dimension and thin plate spline pa-
rameter (12b), respectively. Suppose that f ∈ W k

2 (Ω) for n < 2k ≤ 2m satisfy
f |ΩI = 0. Then, for sufficiently large M associated with Υi given by (11b),∣∣∣∣ ∫

Ω

f(x)− Q̂X(f)

∣∣∣∣ ≤ Chk‖f‖Wk
2 (Ω) .

9
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Proof. The result follows by the Cauchy-Schwarz inequality and Lemma 1.

The Lagrange function quadrature rule was first proposed in [11] for boundary-
less manifolds, e.g., a sphere. The quadrature method proposed enabled the use
of arbitrarily scattered data samples for quadrature on spheres. Although the
quadrature weights proposed required solving a dense linear system, the authors
provided a preconditioner for the quadrature weight linear algebraic system that
resulted in a practical quadrature routine [8, Section 7]. The Lagrange function
quadrature routine has also been used for Galerkin methods for partial differen-
tial equations on spheres in [12]. In the paper [1], a quadrature rule for compact
domains was introduced by modifying the construction on manifolds.

The local quadrature weights are constructed by computing the integrals of
the translates ϕ(‖x − xi‖), a modification of the method of [1]. Substituting
(12a) into (13) grants

ŵi =

|Υi|∑
j=1

αj

∫
Ω

ϕ(‖x− xj‖) dx+

L∑
l=1

βl

∫
Ω

pl(x) dx .

The construction of the local quadrature weights does not require the solution of
a large linear system. However, the weights do require that the local Lagrange
function coefficients are first computed.

4. Galerkin Radial Basis Function Method

4.1. Local Lagrange Discretization

Let X ⊂ Ω ∪ ΩI be a set of quasi-uniformly scattered centers with mesh
norm h. For each center xi ∈ X, we construct bi (12a), the local Lagrange
function centered at xi. Unfortunately, the span{bi : xi ∈ Ω} 6⊂ L2

c(Ω ∪ ΩI)
because the local Lagrange functions bi are necessarily nonzero over ΩI . Hence
we replace bi with b̃i = bi1Ω, where 1Ω is an indicator function for Ω and set

Vh = span{b̃i}Ni=1 ⊂ L2
c(Ω ∪ ΩI) , (14)

the space of shape functions (9). By construction, a function fh ∈ Vh satisfies
the constraint fh|ΩI = 0. The following result explains that this constraint
does not increase the approximation error when the constrained local Lagrange
function b̃i replaces bi. We remark that we can replace the constraint on fh ∈
Vh so that fh|ΩI = g for some function g ∈ L2(ΩI) by instead considering
bi1Ω + g1ΩI . This clever choice enables us to consider nonhomogenous volume-
constrained nonlocal diffusion problems (3), i.e., the volume constraint u = g.

Proposition 1. Let u ∈W k
2 (Ω) for n < 2k ≤ 2m be the solution to the nonlocal

problem (6) where m denotes the thin plate spline parameter (12b), and let
uh ∈ Vh be the solution to the discrete variational problem (9) where Vh is given
by (14). Then the estimate

‖u− uh‖L2(Ω∪ΩI) ≤ Chk‖u‖Wk
2 (Ω∪ΩI).

10
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holds for sufficiently small h and for sufficiently large M associated with Υi

given by (11b)

Proof. By setting uh =
∑N
i=1 u(xi)b̃i, we have

‖u− uh‖L2(Ω∪ΩI) ≤ C‖u−
N∑
i=1

u(xi)b̃i‖L2(Ω∪ΩI) = C‖u−
N∑
i=1

u(xi)bi‖L2(Ω)

≤ C‖u−
N∑
i=1

u(xi)bi‖L2(Ω∪ΩI).

We now apply Lemma 1 to establish the estimate.

Section 2.1 demonstrated that the infinite dimensional nonlocal diffusion
problem is well-posed subject to the conditions on the kernel. In particular, the
nonlocal operator L (3) is a mapping from L2(Ω ∪ ΩI) to L2(Ω). The error
estimate then implies that the source term f ∈ W k

2 (Ω) in order to satisfy the
hypotheses of the estimate. If m = n = 2, then k has an upper bound of
2; in other words, a quadratic convergence rate is possible when Ω ⊂ R2 and
f ∈W 2

2 (Ω). Our numerical experiments demonstrate second order convergence.
We now demonstrate that the condition number of the stiffness matrix A

is bounded independent of the mesh norm h or the separation radius q. The
Lemma that follows extends results available for finite element methods, e.g.,
[13], to RBF. The result relies on recent advances, see, e.g., [9], in the theory of
radial basis functions.

Lemma 3. The condition number of the discrete stiffness matrix A is bounded
above by a constant independent of h and q.

Proof. Let A denote the N × N symmetric stiffness matrix and let c ∈ Rn.
Then,

〈Ac, c〉 =
N∑
i=1

( N∑
j=1

(
Ai,jci

)
cj

)
= a

( N∑
i=1

cib̃i,
N∑
j=1

cj b̃j

)
.

By the coercivity and continuity of the bilinear form and since
∑N
i=1 cib̃i ∈

L2
c(Ω ∪ ΩI), there exists λ1, λ2 such that

λ1‖
N∑
i=1

cib̃i‖L2(Ω∪ΩI) ≤ a
( N∑
i=1

cib̃i,

N∑
j=1

cj b̃j

)
≤ λ2‖

N∑
i=1

cj b̃j‖L2(Ω∪ΩI).

It follows that since b̃i = 0 on ΩI and b̃i|Ω = bi,

λ1‖
N∑
i=1

cib̃i‖L2(Ω∪ΩI) = λ1‖
N∑
i=1

cibi‖L2(Ω) .
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By [9, Proposition 5.3] and [9, Theorem 4.12], there exists CΩ and CΩ∪ΩI inde-
pendent of h and q such that

CΩq
N‖c‖`2(N) ≤ ‖

N∑
i=1

cibi‖L2(Ω) ‖
N∑
i=1

cibi‖L2(Ω∪ΩI) ≤ CΩ∪ΩIq
N‖c‖`2(N).

Then, we bound

cond(A) ≤ λmax(A)

λmin(A)
≤ CΩ∪ΩIλ2

CΩλ1
.

4.2. Approximating the stiffness matrix by quadrature

A direct evaluation of the integrals for the bilinear form a results in a dense
stiffness matrix. However, the local Lagrange function b̃k decays rapidly away
from the center xk. We now introduce a practical method to approximate the
elements of the A that generates a sparse matrix. The method applies the
quadrature rule (13) twice because of the double integration:

Ai,j = a(b̃i, b̃j)

= 2

∫
Ω∪ΩI

∫
Ω∪ΩI

b̃i(x)b̃j(x)γ(x, y) dx dy

− 2

∫
Ω∪ΩI

∫
Ω∪ΩI

b̃i(x)b̃j(y)γ(x, y) dx dy

≈ 2 δi,j ŵi

∫
Ω∪ΩI

γ(xi, y) dy − 2 ŵiŵj γ(xi, xj) , (15)

where we invoked the symmetry of the kernel for the second equality and then
repeatedly exploited the identity b̃j(xk) = δj,k from the discussion following
(12c). The assumption (4) on the kernel that γ(x, y) = 0 for ‖x − y‖ ≥ ε then
results in a stiffness matrix that is nonzero only within the region of nonlocality.
The integral involving γ(xi, y) may be computed analytically for some kernels
or by quadrature. The resulting stiffness matrix is symmetric, and also positive
definite when the weights ŵi are positive and∫

Ω∪ΩI

γ(xi, y) dy >
∑
j 6=i

ŵj γ(xi, xj) .

The latter inequality implies that the approximate stiffness matrix is strictly
diagonally dominant and so positive definite since it is also symmetric. The
necessity of a positive ŵi is apparent otherwise the associated diagonal element
is negative and hence A cannot then be positive definite.

We now demonstrate that the density of nonzero elements in the stiffness
matrix is bounded independent of the mesh norm h and separation radius q.

Lemma 4. Let {X}h,q be a collection of quasi-uniformly distributed centers in
Rn. Then, the ratio of the number of nonzero entries per row to the total number
of columns is bounded independent of h, q.
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Proof. Fix X := Xh,q and fix xi ∈ X. Recall that ‖xi − xj‖ ≥ ε, Ai,j = 0 by
(15). Let Ni = {xj : ‖xj − xi‖ ≤ ε}. Let Cn denote the constant so that a ball
of radius r has volume Cnr

N . The number of nonzero entries on row i is the
same as the cardinality of Ni, which we compute by estimating the number of
centers in Ni. We bound the cardinality |Ni| of Ni by noting that every center
is separated by at least q, so

Cn
(
|Ni|

)
qN = ∪xj∈Ni

µ
(
Bq(xi)

)
≥ µ

(
Bε(xi)

)
= Cnε

N ,

which implies |Ni| ≤ εNq−n. The density per row is computed by |Ni|
N ≤ εNq−n

N .
We bound N since we may cover Ω with balls of radius h by Ω ⊂ ∪xj∈XBh(xj).
Consequently, µ(Ω) ≤ NCnhN , which implies

Ni
N
≤ εNq−n

µ(Ω)C−nn h−n
=
Cnε

N

µ(Ω)

hN

qN
.

The result follows by recalling that (10b) bounds the mesh ratio h/q.

We compute the values bi from (9) by applying the local Lagrange function
quadrature rule

bi ≈ f(xi)ŵi1Ω(xi) , (16)

introduced in Section 4.1.
Let ũh denote the solution to the discretized linear system assembled by

quadrature from (15) and (16). We desire an estimate that predicts the conver-
gence rate of ũh to u in terms of h, as in Proposition 1. However, this requires a
thorough analysis of the affect of quadrature on the solution to the resulting lin-
ear system of equations. By applying the triangle inequality and Proposition 1,
we may estimate

‖u− ũh‖L2 ≤ ‖u− uh‖+ ‖uh − ũh‖L2 ≤ Chk‖u‖Wk
2

+ ‖uh − ũh‖L2 .

Both uh and ũh are linear combinations of local Lagrange functions with co-
efficients {αi}Ni=1 and {α̃i}Ni=1 respectively. In the numerical experiments we
present in Section 5, we only produce the coefficients {α̃i}Ni=1 since we apply
quadrature to assemble the linear system of equations. The error between uh
and ũh may be quantified by

‖uh − ũh‖L2 = ‖
N∑
i=1

(αi − α̃i)bi‖L2 ≤ CqN‖αi − α̃i‖`2(N).

We do not currently have an estimate to bound ‖αi− α̃i‖`2(N). Despite the lack
of theoretical justification, we demonstrate in Section 5 that the discrete solution
produced by solving the linear system assembled by using quadrature follows
an estimate of the form in Proposition 1. These results suggest ‖u − ũh‖L2 ≈
‖u−uh‖L2 ≤ Chk‖u‖Wk

2
. Further theoretical work on RBF quadrature methods

is required to resolve this estimate.
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5. Numerical Results

We present numerical results for experiments using the discretization de-
scribed in Section 4. We discuss local Lagrange function construction, L2 error
and condition number computations. We compare the theoretical prediction
for L2 convergence and condition numbers with observed results from numer-
ical experiments. We consider solving two dimensional problems of the form
(9) with a radial kernel Φ and two different diffusion coefficients κ; see Sec-
tion 5.1 and Section 5.2. For all tests we consider zero Dirichlet volume con-
straints. The tests are computed on the set Ω ∪ ΩI where Ω = (0, 1) × (0, 1)
and ΩI = [− 1

4 ,
5
4 ] × [− 1

4 ,
5
4 ]\Ω. All computations are done in MATLAB and

the condition numbers of the sparse stiffness matrices are approximated by the
condest function. The sparse linear system is solved with either MATLAB’s
backslash operator or by conjugate gradient with a specified tolerance of 10−9.
The number of iterations required for the convergence of the conjugate gradient
algorithm did not vary as the mesh norm decreased. This is as expected since
the condition number does not change with the mesh norm.

The local Lagrange functions are constructed with linear combinations of
the surface spline (12b) where n = 2, L = 3 and m = 2. Each local Lagrange
function is constructed using approximately 11 logN2 nearest neighbor centers,
where N is the total number of centers in Ω ∪ ΩI . The stiffness matrix for
the nonlocal problem only requires Lagrange functions centered in Ω, although
thin plate splines centered in ΩI are required for the construction of the local
Lagrange functions as described in Section 3.1.

The kernel (7) is used and a solution u ∈ L2
c(Ω ∪ ΩI) is chosen for each

numerical experiment. The source function f is manufactured by computing
Lu(xi) = f(xi) for each center xi, the values of f(xi) are computed by using
tensor products of Gauss-Legendre nodes to approximate the integral in (3).

We study L2 convergence of the discrete solution by constructing sets of
uniformly spaced centers and sets of scattered centers with various mesh norms.
Uniformly spaced collections of centers Xh are constructed using grid spacing
h = .04, .02, .014, .008, and .006. Collections of scattered centers X̃h are con-
structed by modifying centers in Xh by a random perturbation of magnitude
at most 4h/15. The convergence of the discrete solution uh to the solution u
is measured by plotting the L2 norm of the error ‖uh − u‖L2(Ω∪ΩI) against the

mesh norm h. We expect for u ∈W k
2 (Ω∪ΩI) that ‖u−uh‖L2(Ω) ≤ Chk‖u‖Wk

2 (Ω)

by Proposition 1.

5.1. Linear diffusion coefficient

We choose solution a u and a kernel γ with diffusion coefficient κ and radial
function Φ given by

u(x1, x2) = sin(2πx1) sin(2πx2)1Ω(x1, x2)

κ(x1, x2) = 1 + x1 + x2

Φε(‖x− y‖) = exp
(
− (1− ε−2‖x− y‖2)−1

)
.

(17)
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0.006 0.008 0.014 0.02 0.04 
0.0001

0.001 

0.01  
L2error
Convergence O(h1.5)

Figure 2: The log of h versus the log of the L2 error for the linear diffusion coefficient
experiment with functions given by (17) is displayed.

Figure 2 displays the observed L2 convergence rates with respect to the mesh
norm h for the uniformly spaced and scattered centers experiments. The log of
the computed L2 error versus the log of the mesh norm is presented along with
a best fit line to estimate the convergence order of the observed data. Table 1
displays the condition numbers of the discrete stiffness matrices. The observed
condition numbers of the stiffness matrices do not increase as the mesh norm
decreases, which matches the result of Lemma 3.

5.2. Exponential diffusion coefficient

We choose solution a u and a kernel γ with diffusion coefficient κ and radial
function Φ given by

u(x1, x2) =
(
x1(x1 − 1)

) 3
2
(
x2(x2 − 1)

) 3
2
1Ω(x1, x2)

κ(x1, x2) = exp(x1 + x2)

Φε(‖x− y‖) = exp
(
− (1− ε−2‖x− y‖2)−1

)
.

(18)

Figure 3 displays the L2 convergence plots for the experiments involving u2

and κ2. The L2 error rate matches the expected convergence rate predicted
by Proposition 1. The expected h2 order convergence is observed in both the
uniformly spaced centers and the scattered centers experiments. Table 1 displays
the condition numbers for the discrete stiffness matrices of various values for h.
The condition numbers of the discrete stiffness matrices do not increase as the
mesh norm decreases, which matches the prediction in Lemma 3.

5.3. Vanishing Nonlocality

We present numerical results investigating the effects of decreasing the non-
locality ε. As discussed following (8), the solution of the nonlocal problem
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0.006 0.008 0.014 0.02 0.04 
1e-06 

1e-05 

0.0001
L2error
Convergence O(h2)

Figure 3: The log of h versus the log of the L2 error for the exponential diffusion coefficient
experiment with functions given by (18) is displayed.

Table 1: The mesh norm h, number of rows n of the stiffness matrix, and the estimated
condition number for the stiffness matrix with the linear diffusion coefficient (17) and the
exponential diffusion coefficient (18). The condition numbers of the stiffness matrices does
not increase as h decreases.

Approximate Condition Number

h n Linear Exponential
2.83e-2 625 58 89
1.41e-2 2500 59 90
9.9e-3 5041 59 90
5.7e-3 15625 60 92
4.2e-3 27889 60 92
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converges to the solution of the classical diffusion equation with coefficient κ as
ε decreases. Recent work has investigated the effects of balancing the mesh ratio
h for a finite element discretization with decreasing ε to some limit, e.g., 0. The
authors of [14, Section 4.3] demonstrated that as the nonlocality decreases to
zero while hold the mesh size fixed, the finite element stiffness matrices for the
nonlocal problems converged to discretizations of the local problem. More ab-
stractly, a thorough study on asymptotically compatible schemes extended the
previous work to general discretizations such as collocation, finite difference,
and Galerkin methods [15]. Our objective here is to investigate, for fixed mesh
norm h, how the solution to a nonlocal problem with decreasing nonlocality
ε compares to the solution to the corresponding local problem, similar to [14,
Section 4.3]. As the RBF method we present is a new method not previously
considered, we perform similar experiments to understand whether this method
behaves analogously as the methods considered in [14] behave in the local limit.

We consider inhomogeneous kernels of the form

γε(x, y) =
1

ε3

(
κ(x) + κ(y)

)
Φε(

1

ε
‖x− y‖) . (19)

We investigate approximating the solution to an inhomogeneous differential
equation by solving an inhomogeneous nonlocal problem with sufficiently small
ε. Our numerical experiments demonstrate that the discrete solution to the in-
homogeneous nonlocal problem converges to the solution of the inhomogeneous
differential equation.

We assume that κ, u : R → R are smooth functions. Then, for fixed x ∈ Ω,
we apply a Taylor series expansion in a ball Bε(x) for u(y)−u(x) and κ(x)+κ(y)
to L to obtain

Lεu(x) = 2
(
k(x)u′(x)

)′ ∫ 1

−1

τ2Φε(|τ |)dτ +O(ε2) ,

where we invoked the symmetry (in x and y) of the kernel (19). Therefore, as
ε decreases to zero,

Lεu(x)→
(
ρk(x)u′(x)

)′
and ρ := 2

∫ 1

−1

τ2Φ(|τ |) dτ ,

a formal derivation of (8).
We numerically experiment with a Lagrange function discretization to solve

the problem Lεuε = f for inhomogeneous nonlocal operators. Let u denote the
solution to the classical problem (8) and let h be a given mesh norm. We solve
Lεuε = f by discretizing the problem with Lagrange functions to construct
an approximate solution uε,h. We numerically demonstrate that as ε → 0,
‖u− uε,h‖L2(Ω∪ΩI) ≈ O(ε2).

We let Φ(ε−1‖x‖) =
(
1 − ε−2‖x‖2)1‖x‖<ε(x) and we consider two diffusion

coefficients κ(x, y). We first consider a case of a linear inhomogeneous function
of the form κ1(x, y) = 1 + x + y and κ2(x, y) = exp(x + y). We set γε as
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Figure 4: The log of ε vs. the log of the L2 error of the discrete solution uε,h is plotted for
the experiment using κ1. As ε goes to zero, we observe ε2 convergence.

in (19) with the two choices for κ. The mesh norm h = .000075 is fixed for
the experiments and we consider a range of ε values from .075, .0625, .05, .04,
and .035. We discretize the problem Lεuε = f with Lagrange functions and a
discrete solution uε,h is computed as described in Section 4.

We choose

u(x) =
(
1− cos(2πx)

)
1[0,1](x) (20)

and we analytically compute the source term f for the classical problem (8) to
obtain

f(x) =

{
−2π

(
sin(2πx) + 2π(1 + x) cos(2πx)

)
for κ1 ,

− exp(x)
(
2π sin(2πx) + 4π2 cos(2πx)

)
for κ2 .

In contrast to the experiments in Section 5.1 and Section 5.2, the source function
f is fixed, h is fixed, and ε changes. For the fixed collection of centers with
h = 7.5 × 10−5, for either κ1 or κ2, the L2 error ‖u − uε,h‖L2[0,1] converges
at approximately the expected rate of O(ε2). A convergence rate of 1.94 was
observed for κ1 and 1.92 for κ2. The numerical results support the contention
that the solution to the classical problem (8) is approximated by discretizing
and solving an inhomogeneous nonlocal volume constrained equation.

5.4. Effects of Scattering Centers on the Solution

We investigate the effects of using increasingly scattered collections of cen-
ters on the Galerkin radial basis function method. Radial basis function meth-
ods, being inherently meshfree, offer the possibility of working with highly non-
uniform collections of centers. However, the mesh ratio ρ (10a) may become
large for highly scattered collections of centers. This may have deleterious ef-
fects on the quadrature weights, the condition number of the stiffness matrix,
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Table 2: Results for the scattered centers experiment. Larger values of scattering produces
large mesh ratios, which may produce negative quadrature weights.

α Mesh Ratio ρ Condition Number mini ŵi

1
16 1.142 7.9× 101 3.34× 10−4

2
16 1.3 8.8× 101 2.9× 10−4

3
16 1.6 9.0× 101 2.0× 10−4

4
16 2.0 1.1× 102 1.4× 10−4

5
16 2.7 1.4× 102 4.4× 10−5

6
16 3.9 6.5× 102 −7.6× 10−5

7
16 7.4 7.3× 102 −2.1× 10−4

or the solution to the nonlocal problem. For example, the constants CΩ and
CΩ∪ΩI in Lemma 3 implicitly depend upon the mesh ratio being bounded.
Consequently, if the mesh ratio increases, Lemma 3 may not hold. Informally, a
large value of ρ is analogous to a finite element discretization where one triangle
becomes disproportionately small relative to the rest of the mesh.

We place uniformly spaced centers, X, with grid spacing h = .02 along
[−.25, 1.25]2. For each center in [0, 1], a local Lagrange function will be gener-
ated. The centers outside of [0, 1]2 are used only to aid in the later construction
of the local Lagrange functions after we scatter the centers. A scattering pa-
rameter α is introduced, which will vary for each run of the experiment. Each
center xi ∈ [0, 1]2∩X is perturbed in a random direction with magnitude α ·h to
generate the collection of scattered centers, Xα. The local Lagrange functions
are then constructed, and the nonlocal problem is solved using the resulting dis-
cretization and quadrature weights. Our objective is to study how the condition
number of the matrix, the mesh ratio ρ, and the quadrature weights vary as the
scattering parameter α increases.

We choose values α = [1/16, 2/16, 3/16, 4/16, 5/16, 7/16]. To prevent possi-
ble overlap of two centers after perturbing, we exclude the case α = 1/2. For
each value of α, a collection of scattered centers is generated and corresponding
local Lagrange functions and quadrature weights are produced. We then solve
the nonlocal problem with the method of Section 4.

The results of the experiment are listed in Table 2. Larger mesh ratio values
indicate that two centers may be disproportionately close relative to the posi-
tions of other centers. In this case, the integrals of the local Lagrange functions
may be negative which results in negative quadrature weights. As explained
following (15), the resulting stiffness matrix is then no longer positive definite.
While the resulting linear system may have a numerical solution, the conjugate
gradient iteration may fail. As can be seen in Table 2, the cases of α = 6/16, 7/16
results in negative quadrature weights.

19

S
an

di
a 

N
at

io
na

l L
ab

s 
S

A
N

D
-2

01
5-

05
11

J



0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5: Example of randomly generated scattered centers perturbed with scatter parameter
α = 7

16
.

6. Conclusion

The primary contribution of our paper was the introduction of a meshfree
discretization for a nonlocal diffusion problem using a localized basis of radial
basis functions. Our method consisted of a conforming radial basis of local
Lagrange functions for a variational formulation of a volume constrained non-
local diffusion equation. We also established an L2 error estimate on the local
Lagrange interpolant. The stiffness matrix was assembled by a special quadra-
ture routine unique to the localized basis. Combining the quadrature method
with the localized basis produced a well-conditioned, sparse, symmetric posi-
tive definite stiffness matrix. We demonstrated that both the continuum and
discrete problems are well-posed by appealing to recent work and presented nu-
merical results for the convergence behavior of the radial basis function method.
Finally, we explored approximating the solution to inhomogeneous classical dif-
fusion equation by solving an inhomogeneous nonlocal integral equation using
our proposed radial basis function method.

[1] S. D. Bond, R. B. Lehoucq, S. T. Rowe, A Galerkin radial basis function
method for nonlocal diffusion, in: M. Griebel, M. A. Schweitzer (Eds.),
Meshfree Methods for Partial Differential Equations VII, Vol. 100 of Lec-
ture Notes in Computational Science and Engineering, Springer Interna-
tional Publishing, 2015, pp. 1–21.

[2] Q. Du, M. Gunzburger, R. B. Lehoucq, K. Zhou, Analysis and approxima-
tion of nonlocal diffusion problems with volume constraints, SIAM Review
54 (4) (2012) 667–696.

[3] N. Burch, M. DElia, R. Lehoucq, The exit-time problem for a Markov jump
process, The European Physical Journal Special Topics 223 (14) (2014)

20

S
an

di
a 

N
at

io
na

l L
ab

s 
S

A
N

D
-2

01
5-

05
11

J



3257–3271.
URL http://dx.doi.org/10.1140/epjst/e2014-02331-7

[4] Q. Du, M. Gunzburger, R. B. Lehoucq, K. Zhou, A nonlocal vector calculus,
nonlocal volume-constrained problems, and nonlocal balance laws, Math.
Models Methods Appl. Sci 23 (2013) 493–540.

[5] Q. Du, R. Lehoucq, A. Tartakovsky, Integral approximations to classical
diffusion and smoothed particle hydrodynamics, Computer Methods in Ap-
plied Mechanics and Engineering 286 (2015) 216–229.

[6] H. Wendland, Scattered Data Approximation, Cambridge University Press,
2005.

[7] G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, World
Scientific, 2007.

[8] E. J. Fuselier, T. Hangelbroek, F. J. Narcowich, J. D. Ward, G. B. Wright,
Localized bases for kernel spaces on the unit sphere, SIAM J. Numer. Anal.
51 (5).

[9] T. Hangelbroek, F. J. Narcowich, C. Rieger, J. D. Ward, An inverse theo-
rem for compact Lipschitz regions in Rd using localized kernel bases, ArXiv
e-printsarXiv:1508.02952.

[10] F. J. Narcowich, J. D. Ward, H. Wendland, Sobolev error estimates and a
Bernstein inequality for scattered data interpolation via radial basis func-
tions, Constructive Approximation 24 (2) (2006) 175–186.

[11] E. J. Fuselier, T. Hangelbroek, F. J. Narcowich, J. D. Ward, G. B. Wright,
Kernel based quadrature on spheres and other homogeneous spaces, Nu-
merische Mathematik 127 (1) (2014) 57–92.

[12] F. J. Narcowich, S. T. Rowe, J. D. Ward, A Novel Galerkin Method for
Solving PDEs on the Sphere Using Highly Localized Kernel Bases, ArXiv
e-printsarXiv:1404.5263.

[13] K. Zhou, Q. Du, Mathematical and numerical analysis of linear peridynamic
models with nonlocal boundary conditions, SIAM Journal of Numerical
Analysis 48 (2010) 1759–1780.

[14] X. Tian, Q. Du, Analysis and comparison of different approximations to
nonlocal diffusion and linear peridynamic equations, SIAM Journal of Nu-
merical Analysis 51 (2013) 3458–3482.

[15] X. Tian, Q. Du, Nonconforming discontinuous galerkin methods for non-
local variational problems, SIAM Journal of Numerical Analysis 53 (2014)
762–781.

21

S
an

di
a 

N
at

io
na

l L
ab

s 
S

A
N

D
-2

01
5-

05
11

J




